US009473415B2

United States Patent

(12) (10) Patent No.: US 9,473,415 B2
Kumar 45) Date of Patent: Oct. 18, 2016
(54) QOS IN A SYSTEM WITH END-TO-END gi‘;?gg% g} ggggé i%ﬂi?ilet_ al. |
K s erjea et al.
FLOW CONTROL AND QOS AWARE 6,925,627 Bl 8/2005 Longway et al.
BUFFER ALLOCATION 7065730 B2 6/2006 Alpert et al.
7,318,214 Bl 1/2008 Prasad et al.
(71) Applicant: NETSPEED SYSTEMS, San Jose, CA 7,590,959 B2 9/2009 Tanaka
(US) 7,639,037 B1* 12/2009 Eberleccceene. HO04L 47/10
326/101
7,725,859 Bl 5/2010 Lenah t al.
(72) Inventor: Sailesh Kumar, San Jose, CA (US) 7.808.968 Bl 10/2010 Kzrllm;zli It et al.
7,917,885 B2 3/2011 Becker
(73) Assignee: NETSPEED SYSTEMS, San Jose, CA 8,050,256 Bl 11/2011 Bao et al.
(US) (Continued)
(*) Notice: Subject. to any disclaimer,. the term of this FOREIGN PATENT DOCUMENTS
patent is extended or adjusted under 35
U.S.C. 154(b) by 360 days. CN 103684961 A 3/2014
WO 2014059024 Al 4/2014
(21) Appl. No.: 14/185,811
OTHER PUBLICATIONS
(22) Filed: Feb. 20, 2014
Designing and Implementation of a Network on Chip Router Based
(65) Prior Publication Data on Handshaking Communication Mechanism: Asghari et al.: World
Applied Science Journal 2009.*
US 2015/0236963 Al Aug. 20, 2015 .
(Continued)
(51) Imt. ClL
03K 19003 (2006.01) Primary Examiner — Jay P Patel
HO4L 12/851 (2013.01) (74) Attorney, Agent, or Firm — Procopio, Cory,
HO4L 12/801 (2013.01) Hargreaves & Savitch LLP
HO4L 12/835 (2013.01)
(52) US. CL (57) ABSTRACT
CPC ... HO4L 47/24 (2013.01); HO4L 47/19 The present disclosure is directed to Quality of Service
(2013.01); HO4L 47/30 (2013.01) (QoS8) and handshake protocols to facilitate endpoint band-
(58) Field of Classification Search width allocation among one or more agents in a Network on
CPC ... HOA4L 47/24; HO4L 47/30, HO4L 47/19; Chip (NoC) for an endpoint agent. The QoS policy and
HO04L 67/00 handshake protocols may involve the use of credits for
See application file for complete search history. buffer allocation which are sent to agents in the NoC to
compel the acceptance of data and the allocation of an
(56) References Cited appropriate buffer. Messages sent to the agent may also have

U.S. PATENT DOCUMENTS

5,432,785 A 7/1995 Ahmed et al.
5,764,740 A 6/1998 Holender
5,991,308 A 11/1999 Fuhrmann et al.
6,003,029 A 12/1999 Agrawal et al.

e
o7 tonz

S

PN e B
N

a priority associated with the message, wherein higher
priority messages have automatic bandwidth allocation and
lower priority messages are processed using a handshake
protocol.

20 Claims, 14 Drawing Sheets

oS

ricratedt X

v

e

\{{'- of thio Retpresd 2
.

3
&

e

e B0

US 9,473,415 B2

Page 2
(56) References Cited 2014/0115218 Al 4/2014 Philip et al.
2014/0115298 Al 4/2014 Philip et al.
U.S. PATENT DOCUMENTS 2014/0156929 Al* 6/2014 Falsafi GOGF 12/0813
711/122
8,059,551 B2 11/2011 Milliken 2014/0204740 Al* 7/2014 Tokutsu HO04L 47/2441
8,099,757 B2 1/2012 Riedle et al. 370/230
8,136,071 B2 3/2012 Solomon 2014/0301205 Al* 10/2014 Harrand HO04L 49/109
8,281,207 B2 10/2012 Dasu et al. 370/235
8312,402 Bl 11/2012 Okhmatovski et al. 2014/0328172 Al* 11/2014 Kumarc....... HO041. 47/18
8,448,102 B2 5/2013 Kornachuk et al. - 370/231
8,492,886 B2 7/2013 Or-Bach et al. 2014/0376569 Al* 12/2014 Philip .cccoovvvvvvevnennns GO6F 1/04
8,541,819 Bl 9/2013 Or-Bach et al. 370/503
8,543,064 B2 9/2013 Ge et al. 2015/0220470 Al* 8/2015 Chenccoceuee. HO04L 49/109
8,601,423 Bl 12/2013 Philip et al. 710/105
8,635,577 B2 1/2014 Kazda et al.
8,667,439 Bl 3/2014 Kumar et al. OTHER PUBLICATIONS
8,671,220 B1* 3/2014 Gargceoeonne. HO04L 47/10
8.717.875 B2 52014 Bei fal 709/212 Abts, D, et al., Age-Based Packet Arbitration in Large-Radix k-ary
2002/6071’392 Al 6/2002 Gfg)ilr:rn(;teala ' n-cubes, Supercomputing 2007 (SC07), Nov. 10-16, 2007, 11 pgs.
2002/0073380 Al 6/2002 Cooke et al.' Das, R, et al., Aergia: Exploiting Packet Latency Slack in On-Chip
2002/0095430 Al 7/2002 Egilsson et al. Networks, 37th International Symposium on Computer Architecture
2003/0043760 Al* 3/2003 Taylor HO04B 7/18584 (ISCA °10), Jun. 19-23, 2010, 11 pgs.
370/316 Ebrahimi, E., et al., Fairness via Source Throttling: A Configurable
2004/0216072 Al 10/2004 Alpert et al. and High-Performance Fairness Substrate for Multi-Core Memory
2005/0147081 Al 7/2005 Acharya et al. Systems, ASPLOS 10, Mar. 13-17, 2010, 12 pgs.
2006/0161875 Al 7/2006 Rhee Grot, B., Preemptive Virtual Clock: A Flexible, Efficient, and
2007/0118320 Al 5/2007 Luo et al. Cost-Effective QoS Scheme for Networks-on-Chip, Micro 09, Dec.
2007/0244676 Al 10/2007 Shang et al. 12-16, 2009, 12 pgs
2007/0256044 Al 11/2007 Coryer et al. ’ - N . .
5007/0267680 Al 11/2007 Uchino et al Grot, B., Kilo-NoC: A Heterogencous Network-on-Chip Architec-
2008/0072182 Al 3/2008 He et al. ’ ture for Scalability and Service Guarantees, ISCA °11, Jun. 4-8,
2008/0120129 Al 5/2008 Seubert et al. 2011, 12 pes. _ _ o
2008/0144670 Al* 6/2008 GOOSSENS GO6F 15/78 Grot, B., Topology-Aware Quality-of-Service Support in Highly
370/503 Integrated Chip Multiprocessors, 6th Annual Workshop on the
2009/0070726 Al 3/2009 Mehrotra et al. Interaction between Operating Systems and Computer Architecture,
2009/0268677 Al 10/2009 Chou et al. Jun. 2006, 11 pgs.
2009/0313592 Al 12/2009 Murali et al. Jiang, N., et al., Performance Implications of Age-Based Alloca-
2010/0040162 Al 2/2010 Suehiro tions in On-Chip Networks, CVA MEMO 129, May 24, 2011, 21
2010/0158023 Al* 6/2010 Mukhopadhyay .. GOGF 15/7825 pes.
370/401 :
Lee, J. W., et al., Globally-Synchronized Frames for Guaranteed
3k
2010/0161938 Al /2010 Heddes .ooooorvio GO6F7113;}? Quality-of-Service in On-Chip Networks, 35th IEEE/ACM Inter-
2010/0162265 Al* 6/2010 Heddes GOG6F 9/542 national Symposium on Computer Architecture (ISCA), Jun. 2008,
719314 12 pes. . o
2010/0191911 Al* 7/2010 Heddes GOGF 15/16 Lee, M. M,, et al., Approximating Age-Based Arbitration in On-
711/118 Chip Networks, PACT ’10, Sep. 11-15, 2010, 2 pgs.
2011/0035523 Al 2/2011 Feero et al. Li, B, et al., CoQoS: Coordinating QoS-Aware Shared Resources in
2011/0060831 Al 3/2011 Ishii et al. NoC-based SoCs, J. Parallel Distrib. Comput., 71 (5), May 2011, 14
2011/0072407 Al 3/2011 Keinert et al. pgs.
2011/0154282 Al 6/2011 Chang et al. International Search Report and Written Opinion for PCT/US2013/
2011/0276937 Al 11/2011 Waller 064140, Jan. 22, 2014’ 9 pgs.
2012/0022841 Al 1/2012 " Appleyard International Search Report and Written Opinion for PCT/US2014/
2012/0023473 Al 1/2012 Brown et al.
012003, Mar. 26, 2014, 9 pgs.
2012/0026917 Al 2/2012 Guo et al. . . -
2012/0110541 Al 52012 Ge et al. International Search Report and Written Opinion for PCT/US2014/
2012/0155250 Al 6/2012 Carney et al. 012012, May 14, 2014, 9 pgs. _
2013/0051397 AL™ 2/2013 GUO oo HO4L. 45/00 Ababei, C., et al., Achieving Network on Chip Fault Tolerance by
370/400 Adaptive Remapping, Parallel & Distributed Processing, 2009,
2013/0080073 Al 3/2013 de Corral IEEE International Symposium, 4 pgs.
2013/0103369 Al 4/2013 Huynh et al. Beretta, I, et al., A Mapping Flow for Dynamically Reconfigurable
2013/0151215 Al 6/2013 Mustapha Multi-Core System-on-Chip Design, IEEE Transactions on Com-
2013/0159944 Al 6/2013 Uno et al. puter-Aided Design of Integrated Circuits and Systems, Aug. 2011,
2013/0174113 Al 7/2013 Lecler et al. 30(8), pp. 1211-1224.
%83;83?;?2% ﬁ} gggg girnes ¢ al Gindin, R., et al., NoC-Based FPGA: Architecture and Routing,
5013/0263068 Al 10/2013 Chf)nef ala ' Proceedings of the First International Symposium on Networks-on-
2013/0326458 Al 12/2013 Kazda et al. Chip (NOCS’07), May 2007, pp. 253-262. .
2014/0052938 Al* 2/2014 Kim woeviveoeoeniin, GO6F 12/00 Yang, J., et al., Homogeneous NoC-based FPGA: The Foundation
711/154 for Virtual FPGA, 10th IEEE International Conference on Computer
2014/0068132 Al 3/2014 Philip et al. and Information Technology (CIT 2010), Jun. 2010, pp. 62-67.
2014/0092740 Al 4/2014 Wang et al.
2014/0098683 Al 4/2014 Kumar et al. * cited by examiner

U.S. Patent Oct. 18, 2016 Sheet 1 of 14 US 9,473,415 B2

FIG. 1(a)

G
E

U.S. Patent Oct. 18, 2016 Sheet 2 of 14 US 9,473,415 B2

ik

ol o ¥
Y i i .
" v - !
< e & f—p O
Li.
A A A
14 l lw
[l o o

i

U.S. Patent Oct. 18, 2016 Sheet 3 of 14 US 9,473,415 B2

T

Vg) 5.

» R |-
xC
\ 4

| 2 |
£ F

» R |-
t

2T

1+ EL
mi

R |«
T

r_.
R |
A B
h 4

> R

FIG. 1(c)

US 9,473,415 B2

Sheet 4 of 14

Oct. 18, 2016

U.S. Patent

U.S. Patent Oct. 18, 2016 Sheet 5 of 14 US 9,473,415 B2

o o N 0 <

S < < < <

o o N 0 <

A 0 0 0 M
—
©
Sy
oN

o “ N n <

« N N N N .
L

o - N 0 <

< — o o ~

T
1
1
1

U.S. Patent Oct. 18, 2016 Sheet 6 of 14 US 9,473,415 B2

a4

34

191 t4rgies

202 — 19— 203

B
FIG. 2(b)

11:?

12
13
14

::@-F"E
5

(0]0)
o1

-

02
201 /'I
03
04

US 9,473,415 B2

Sheet 7 of 14

Oct. 18, 2016

U.S. Patent

(e)€ "ol
H 9]
[4:! » Y » T T4 T4 T4
A A A A A A
h 4 3 ﬁ g b h % Y
7d —» 7Y > d T4 14 T4
A A A A A A
H g b Y b h h %
Fibe » Y » 7Y 14 14 R:]

U.S. Patent Oct. 18, 2016 Sheet 8 of 14 US 9,473,415 B2

S
|

FIG. 3(b)

302

303 301/{
<“—>» Rl >
>

Host

US 9,473,415 B2

Sheet 9 of 14

Oct. 18, 2016

U.S. Patent

¥ "Old

U~-Gov &-00v
waby NoN waly DoN

2-00¥
usby HON

.

10F
Asousapy

1-00v
wely OON

US 9,473,415 B2

Sheet 10 of 14

Oct. 18, 2016

U.S. Patent

S Dlid
U305 . E006 A
juaby QOoN weby QON jualy DON
bA

B0uoD Alouisiy

08
ASOUIRIN

-G08
waby Do

US 9,473,415 B2

Sheet 11 of 14

Oct. 18, 2016

U.S. Patent

9 'Ol

wsaly DoN
Bunsenbay 0 vogeily
JOUNG SO UPeLTy HNEs]

yurlhy Ty
Buanimomd Bul 10 Ao
LEROUL JEUNG SOy
puis ysanhay waowy

7 % g ‘
U 5
eus SRA A,

SO I
Aycepmays-unng Buusgun
wiefy oo Bunsendey
o} nlessep ey

3 ORI MUNg 107, fianbey 84 0 wEch
BT UH DRIBIDOBRY D L lODE O GEDDIY e .
ek o s N 9 ST B uED)

F;

sy

Ll e

LR B¢

jisalhy
g Bupsogy e senbey
Wiaiy BB B88DUd

Mww\wwnw s d

US 9,473,415 B2

Sheet 12 of 14

Oct. 18, 2016

U.S. Patent

{334 D14

{8)s "Oi4

Pl ©id

(0} 9l

{9} oid

{232 14

¥0I

s A

by

| DoN Bumisney

vl
ualy
0N BUIAROSN

paan) i oBessapy puessy

2067
weby
nop Bungsenbseyy

Y04
aby
NoN Buiseoey

LOGBOOHY JOUNE 10§ HPBID BNSs|

2

207
panby
aopN Bunsanhay

07
by
00N Buinisosy

3

e1e 10 abeioyg pue jayng O uonesoly Bugeiipuy mmmmwmﬁq

04
weby
oon Bugsanbay

0
weby

~an Busanbeyd

PRI YiiAA Jesnbay

FAs)A
welby

noN Bugsenbay

274
ey
ooN Bunsosey

E 3

Y

DB BNSS)

267
by
o Bunisnsy

PPBID INOUNAA ISBNDBY

20l
walby ;
DoN Bugsenbay |

US 9,473,415 B2

Sheet 13 of 14

Oct. 18, 2016

U.S. Patent

{plg Ol

(0)g ‘O

{ajg ©I4

(&g "Old

$08
sby

NON Buirmosy

¥08
by

“oN Buinsoayy

PRSI0 UIngey yim abessapy

LIORECOHY JOYNG JOF P8I0 LINIDY enss)

208
waby DoN
Bunsenbay

08
waby

non Buisenayd

»

UPRID YA ISenbay

208
wisby DON
Bunizanbox

¥08
aby

HoN Bunmstay

1R8I BNSS|

208
wely DoN
Bugsenbay

NPSBIT INOLRIAA 18enbay

208
Juaby DON
Bunsanbsyy

US 9,473,415 B2

Sheet 14 of 14

Oct. 18, 2016

U.S. Patent

6 Ol

.,
&
ped

PN

FHW
HITHWOHINGS
AROREW

T
4

e

LMY 3

e,

&
g
S
5""‘"~ e
iy
&%
o)

HMEAKIS

INATT
L0 w
IUOLS Lo,
NHEXE | |
IOVAIEING L.
IR E VI
FOYSHILN Lo,
"

545

US 9,473,415 B2

1

QOS IN A SYSTEM WITH END-TO-END
FLOW CONTROL AND QOS AWARE
BUFFER ALLOCATION

BACKGROUND

1. Technical Field

Methods and example implementations described herein
are directed to interconnect architecture, and more specifi-
cally, implementing Quality of Service (QoS) in a system
with end-to-end flow control and QoS aware buffer alloca-
tion.

2. Related Art

The number of components on a chip is rapidly growing
due to increasing levels of integration, system complexity
and shrinking transistor geometry. Complex System-on-
Chips (SoCs) may involve a variety of components e.g.,
processor cores, DSPs, hardware accelerators, memory and
1/0, while Chip Multi-Processors (CMPs) may involve a
large number of homogenous processor cores, memory and
1/0 subsystems. In both SoC and CMP systems, the on-chip
interconnect plays a role in providing high-performance
communication between the various components. Due to
scalability limitations of traditional buses and crossbar based
interconnects, Network-on-Chip (NoC) has emerged as a
paradigm to interconnect a large number of components on
the chip. NoC is a global shared communication infrastruc-
ture made up of several routing nodes interconnected with
each other using point-to-point physical links.

Messages are injected by the source and are routed from
the source node to the destination over multiple intermediate
nodes and physical links. The destination node then ejects
the message and provides the message to the destination. For
the remainder of this application, the terms ‘components’,
‘blocks’, ‘hosts’ or ‘cores’ will be used interchangeably to
refer to the various system components which are intercon-
nected using a NoC. Terms ‘routers” and ‘nodes’ will also be
used interchangeably. Without loss of generalization, the
system with multiple interconnected components will itself
be referred to as a ‘multi-core system’.

There are several topologies in which the routers can
connect to one another to create the system network. Bi-
directional rings (as shown in FIG. 1(a)), 2-D (two dimen-
sional) mesh (as shown in FIG. 1(6)) and 2-D Torus (as
shown in FIG. 1(c)) are examples of topologies in the related
art. Mesh and Torus can also be extended to 2.5-D (two and
half dimensional) or 3-D (three dimensional) organizations.
FIG. 1(d) shows a 3D mesh NoC, where there are three
layers of 3x3 2D mesh NoC shown over each other. The
NoC routers have up to two additional ports, one connecting
to a router in the higher layer, and another connecting to a
router in the lower layer. Router 111 in the middle layer of
the example has both ports used, one connecting to the
router at the top layer and another connecting to the router
at the bottom layer. Routers 110 and 112 are at the bottom
and top mesh layers respectively, therefore they have only
the upper facing port 113 and the lower facing port 114
respectively connected.

Packets are message transport units for intercommunica-
tion between various components. Routing involves identi-
fying a path composed of a set of routers and physical links
of the network over which packets are sent from a source to
a destination. Components are connected to one or multiple
ports of one or multiple routers; with each such port having
a unique ID. Packets carry the destination’s router and port
1D for use by the intermediate routers to route the packet to
the destination component.

20

25

30

40

45

55

2

Examples of routing techniques include deterministic
routing, which involves choosing the same path from Ato B
for every packet. This form of routing is independent from
the state of the network and does not load balance across
path diversities, which might exist in the underlying net-
work. However, such deterministic routing may imple-
mented in hardware, maintains packet ordering and may be
rendered free of network level deadlocks. Shortest path
routing may minimize the latency as such routing reduces
the number of hops from the source to the destination. For
this reason, the shortest path may also be the lowest power
path for communication between the two components.
Dimension-order routing is a form of deterministic shortest
path routing in 2-D, 2.5-D, and 3-D mesh networks. In this
routing scheme, messages are routed along each coordinates
in a particular sequence until the message reaches the final
destination. For example in a 3-D mesh network, one may
first route along the X dimension until it reaches a router
whose X-coordinate is equal to the X-coordinate of the
destination router. Next, the message takes a turn and is
routed in along Y dimension and finally takes another turn
and moves along the Z dimension until the message reaches
the final destination router. Dimension ordered routing may
be minimal turn and shortest path routing.

FIG. 2(a) pictorially illustrates an example of XY routing
in a two dimensional mesh. More specifically, FIG. 2(a)
illustrates XY routing from node ‘34’ to node 00°. In the
example of FIG. 2(a), each component is connected to only
one port of one router. A packet is first routed over the x-axis
till the packet reaches node ‘04’ where the x-coordinate of
the node is the same as the x-coordinate of the destination
node. The packet is next routed over the y-axis until the
packet reaches the destination node.

In heterogeneous mesh topology in which one or more
routers or one or more links are absent, dimension order
routing may not be feasible between certain source and
destination nodes, and alternative paths may have to be
taken. The alternative paths may not be shortest or minimum
turn.

Source routing and routing using tables are other routing
options used in NoC. Adaptive routing can dynamically
change the path taken between two points on the network
based on the state of the network. This form of routing may
be complex to analyze and implement.

A NoC interconnect may contain multiple physical net-
works. Over each physical network, there may exist multiple
virtual networks, wherein different message types are trans-
mitted over different virtual networks. In this case, at each
physical link or channel, there are multiple virtual channels;
each virtual channel may have dedicated buffers at both end
points. In any given clock cycle, only one virtual channel
can transmit data on the physical channel.

NoC interconnects may employ wormhole routing,
wherein, a large message or packet is broken into small
pieces known as flits (also referred to as flow control digits).
The first flit is the header flit, which holds information about
this packet’s route and key message level info along with
payload data and sets up the routing behavior for all sub-
sequent flits associated with the message. Optionally, one or
more body flits follows the head flit, containing the remain-
ing payload of data. The final flit is the tail flit, which in
addition to containing the last payload also performs some
bookkeeping to close the connection for the message. In
wormhole flow control, virtual channels are often imple-
mented.

The physical channels are time sliced into a number of
independent logical channels called virtual channels (VCs).

US 9,473,415 B2

3

VCs provide multiple independent paths to route packets,
however they are time-multiplexed on the physical channels.
A virtual channel holds the state needed to coordinate the
handling of the flits of a packet over a channel. At a
minimum, this state identifies the output channel of the
current node for the next hop of the route and the state of the
virtual channel (idle, waiting for resources, or active). The
virtual channel may also include pointers to the flits of the
packet that are buffered on the current node and the number
of flit buffers available on the next node.

The term “wormhole” plays on the way messages are
transmitted over the channels: the output port at the next
router can be so short that received data can be translated in
the head flit before the full message arrives. This allows the
router to quickly set up the route upon arrival of the head flit
and then opt out from the rest of the conversation. Since a
message is transmitted flit by flit, the message may occupy
several flit buffers along its path at different routers, creating
a worm-like image.

Based upon the traffic between various end points, and the
routes and physical networks that are used for various
messages, different physical channels of the NoC intercon-
nect may experience different levels of load and congestion.
The capacity of various physical channels of a NoC inter-
connect is determined by the width of the channel (number
of physical wires) and the clock frequency at which it is
operating. Various channels of the NoC may operate at
different clock frequencies, and various channels may have
different widths based on the bandwidth requirement at the
channel. The bandwidth requirement at a channel is deter-
mined by the flows that traverse over the channel and their
bandwidth values. Flows traversing over various NoC chan-
nels are affected by the routes taken by various flows. In a
mesh or Torus NoC, there may exist multiple route paths of
equal length or number of hops between any pair of source
and destination nodes. For example, in FIG. 2(b), in addition
to the standard XY route between nodes 34 and 00, there are
additional routes available, such as YX route 203 or a
multi-turn route 202 that makes more than one turn from
source to destination.

In a NoC with statically allocated routes for various traffic
slows, the load at various channels may be controlled by
intelligently selecting the routes for various flows. When a
large number of traffic flows and substantial path diversity is
present, routes can be chosen such that the load on all NoC
channels is balanced nearly uniformly, thus avoiding a single
point of bottleneck. Once routed, the NoC channel widths
can be determined based on the bandwidth demands of flows
on the channels. Unfortunately, channel widths cannot be
arbitrarily large due to physical hardware design restrictions,
such as timing or wiring congestion. There may be a limit on
the maximum channel width, thereby putting a limit on the
maximum bandwidth of any single NoC channel.

Additionally, wider physical channels may not help in
achieving higher bandwidth if messages are short. For
example, if a packet is a single flit packet with a 64-bit
width, then no matter how wide a channel is, the channel
will only be able to carry 64 bits per cycle of data if all
packets over the channel are similar. Thus, a channel width
is also limited by the message size in the NoC. Due to these
limitations on the maximum NoC channel width, a channel
may not have enough bandwidth in spite of balancing the
routes.

To address the above bandwidth concern, multiple paral-
lel physical NoCs may be used. Each NoC may be called a
layer, thus creating a multi-layer NoC architecture. Hosts
inject a message on a NoC layer; the message is then routed

10

15

20

25

30

35

40

45

50

55

60

65

4

to the destination on the NoC layer, where it is delivered
from the NoC layer to the host. Thus, each layer operates
more or less independently from each other, and interactions
between layers may only occur during the injection and
ejection times. FIG. 3(a) illustrates a two layer NoC. Here
the two NoC layers are shown adjacent to each other on the
left and right, with the hosts connected to the NoC replicated
in both left and right diagrams. A host is connected to two
routers in this example—a router in the first layer shown as
R1, and a router is the second layer shown as R2. In this
example, the multi-layer NoC is different from the 3D NoC,
i.e. multiple layers are on a single silicon die and are used
to meet the high bandwidth demands of the communication
between hosts on the same silicon die. Messages do not go
from one layer to another. For purposes of clarity, the present
application will utilize such a horizontal left and right
illustration for multi-layer NoC to differentiate from the 3D
NoCs, which are illustrated by drawing the NoCs vertically
over each other.

In FIG. 3(b), a host connected to a router from each layer,
R1 and R2 respectively, is illustrated. Each router is con-
nected to other routers in its layer using directional ports
301, and is connected to the host using injection and ejection
ports 302. A bridge-logic 303 may sit between the host and
the two NoC layers to determine the NoC layer for an
outgoing message and sends the message from host to the
NoC layer, and also perform the arbitration and multiplexing
between incoming messages from the two NoC layers and
delivers them to the host.

In a multi-layer NoC, the number of layers needed may
depend upon a number of factors such as the aggregate
bandwidth requirement of all traffic flows in the system, the
routes that are used by various flows, message size distri-
bution, maximum channel width, etc. Once the number of
NoC layers in NoC interconnect is determined in a design,
different messages and traffic flows may be routed over
different NoC layers. Additionally, one may design NoC
interconnects such that different layers have different topolo-
gies in number of routers, channels and connectivity. The
channels in different layers may have different widths based
on the flows that traverse over the channel and their band-
width requirements.

FIG. 4 illustrates an example configuration of a NoC
agent 400. NoC agent, such as agent 400-1 may include a
memory 401 that has a buffer for accepting data such as
packets or flits. The buffer may be divided into several
addresses, which can be allocated to the data in response to
a request for accepting data from another NoC agent such as
400-2, 402-3, . . ., 402-n, collectively referred to as NoC
Agent 400. NoC agent such as 400-1 may be communica-
tively coupled to one or more other NoC agents 400-i
depending on the configuration of the NoC, wherein, once
coupled, NoC 400-1 may receive data from other NoC
agents 400-2 to 400-» and store the data in the buffer of
memory 401 when received.

If a NoC agent 400 processes and accepts requests indis-
criminately, problems may arise in optimizing bandwidth
allocation. In particular, if a NoC agent 400 is an endpoint
(e.g., a resource such as memory or I/O), allocating endpoint
bandwidth among a number of NoC agents 400 may not be
trivial to resolve.

SUMMARY

The present disclosure is directed to Quality of Service
(QoS) and handshake protocols to facilitate endpoint band-
width allocation among one or more agents in a Network on

US 9,473,415 B2

5

Chip (NoC) for an endpoint agent. The QoS policy and
handshake protocols may involve use of credits for buffer
allocation, wherein the credits are sent to agents in the NoC
to compel acceptance of data and allocation of an appropri-
ate buffer. Messages sent to NoC agents may also have a
priority associated with the message, wherein higher priority
messages have automatic bandwidth allocation and lower
priority messages are processed using a handshake protocol.

Aspects of the present application may include a method,
which involves processing a request for accepting data from
a requesting agent associated with a Network on Chip
(NoC), wherein processing can include receiving data, at
receiving NoC agent, associated with the request when the
request is associated with a credit for buffer allocation and
utilizing a handshake protocol to process the request when
the request is not associated with the credit for buffer
allocation. In an implementation, handshake protocol can
include determination of whether a buffer is available for
receiving data associated with the request, wherein in case
a determination, indicative of the buffer being available for
receiving data, is made, a credit can be issued for buffer
allocation to the requesting NoC agent. On the other hand,
in case a determination, indicative of the buffer not being
available for accepting data, is made, the requesting NoC
agent can be notified with an indication of the buffer not
being available.

Aspect of present application may include a computer
readable storage medium storing instructions for executing
a process. The instructions may involve processing a request
for accepting data from a requesting agent associated with a
Network on Chip (NoC), wherein processing can include
receiving data, at receiving NoC agent, associated with the
request when the request is associated with a credit for buffer
allocation and utilizing a handshake protocol to process the
request when the request is not associated with the credit for
buffer allocation. In an implementation, handshake protocol
can include determination of whether a buffer is available for
receiving data associated with the request, wherein in case
a determination, indicative of the buffer being available for
receiving data, is made, a credit can be issued for buffer
allocation to the requesting NoC agent. On the other hand,
in case a determination, indicative of the buffer not being
available for accepting data, is made, the requesting NoC
agent can be notified with an indication of the buffer not
being available.

Aspects of present application may include a method,
which involves, for a network on chip (NoC) configuration,
including a plurality of cores interconnected by a plurality of
NoC agents/routers in a heterogenous or heterogenous mesh,
ring, or torus arrangement, allocating one or more buffers to
one or more agents associated with a Network on Chip
(NoC) based on a Quality of Service (QoS), and sending one
or more credits for buffer allocation to the one or more
agents based on the allocation. In an implementation, one or
more buffers can be reserved for one or more NoC agents
that require a reserve buffer based on the QoS policy.

Aspects of the present application may include a system,
which involves, a processor that can be configured to
execute one or more modules including a memory controller
module, wherein the memory controller module can be
configured to generate instructions for transmitting data/
packets into/from memory controllers of one or more agents
of NoC. Module can also be configured to facilitate Quality-
of-Service (QoS) through various protocols such as a QoS
policy, handshaking protocols, and other protocols depend-
ing on desired implementations, wherein the module can
either configured within each memory controller of respec-

10

15

20

25

30

35

40

45

50

55

60

65

6

tive NoC agent, or in a group/sub-group of controllers, or
can be externally implemented to control and be operatively/
communicatively coupled with respective memory control-
lers. Instructions of the module can be configured to facili-
tate interaction between the data/packet requesting NoC
agents and receiving NoC agents. Such instructions, for
instance, can be implemented on a non-transitory computer
readable medium and configured to process a request for
accepting data, wherein the module may determine whether
to act on the request or deny the request. Module may also
be configured to implement and allocate bandwidth to
associated NoC agents based on a QoS policy by issuing
credits for buffer allocation, thereby behaving as a QoS
policy allocator (QPA).

BRIEF DESCRIPTION OF THE DRAWINGS

FIGS. 1(a), 1(b) 1(c) and 1(d) illustrate examples of
Bidirectional ring, 2D Mesh, 2D Torus, and 3D Mesh NoC
Topologies.

FIG. 2(a) illustrates an example of XY routing in a related
art two dimensional mesh.

FIG. 2(b) illustrates three different routes between a
source and destination nodes.

FIG. 3(a) illustrates an example of a related art two layer
NoC interconnect.

FIG. 3(b) illustrates the related art bridge logic between
host and multiple NoC layers.

FIG. 4 illustrates an example configuration of a NoC
agent.

FIG. 5 illustrates an example configuration of a NoC
agent in accordance with an example implementation.

FIG. 6 illustrates an example implementation of a flow
diagram for processing a request to accept data in accor-
dance with an example implementation.

FIG. 7(a)-(f) illustrates an example implementation
involving a handshake protocol for transmission of data
from requesting NoC agent to receiving NoC agent.

FIG. 8(a)-(d) illustrates an example involving preemptive
issuance of credits by a memory controller in accordance
with an example implementation.

FIG. 9 illustrates a computer system block diagram upon
which example implementations described herein may be
implemented.

DETAILED DESCRIPTION

The following detailed description provides further
details of the figures and example implementations of the
present application. Reference numerals and descriptions of
redundant elements between figures are omitted for clarity.
Terms used throughout the description are provided as
examples and are not intended to be limiting. For example,
the use of the term “automatic” may involve fully automatic
or semi-automatic implementations involving user or
administrator control over certain aspects of the implemen-
tation, depending on the desired implementation of one of
ordinary skill in the art practicing implementations of the
present application.

Example implementations described herein are directed to
end-to-end flow control for data transmitted within a NoC.
By implementation of a flow control, agents that submit a
request to send data are configured to send data only when
allowed by the receiving NoC agent. In another example
implementation, requesting agent obtains permission from
receiving agent before the requesting agent can send data. In
another example implementation, permission can be granted

US 9,473,415 B2

7

by the requesting agent when the requesting agent has space
in memory. In another implementation, all data sent by the
requesting agent must be accepted by the receiving agent,
and therefore the receiving agent must have pre-allocated
buffers to accept data.

FIG. 5 illustrates an example configuration of a NoC
agent 500 in accordance with an example implementation of
the present disclosure. In an exemplary embodiment, pro-
posed system architecture can include multiple NoC agents/
nodes 500-1, 500-2, 500-3, . . ., 500-», collectively referred
to as 500 hereinafter. Each NoC agent such as 500-1 can
include a memory 504 operatively coupled with a memory
controller 502, which is configured to facilitate Quality-of-
Service (QoS) through various protocols such as a QoS
policy, handshaking protocols, and other protocols depend-
ing on desired implementations. Memory controller 502 can
be configured to facilitate interaction between the NoC agent
500-1 and other NoC agents 500-2 to 500-». For instance,
when memory controller 502 processes a request for accept-
ing data, the controller 502 may determine whether to act on
the request or deny the request. Memory controller 502 may
also initially allocate bandwidth to associated NoC agents
500 based on a QoS policy by issuing credits for buffer
allocation, thereby behaving as a QoS policy allocator
(QPA).

In an embodiment, various policies can be configured in
memory controller 502 based on desired implementations.
For example, QoS can be enforced based on a handshake
protocol between NoC agent 500-1 and other NoC agents
500. Each NoC agent in the NoC can also be configured with
its own memory controller 502 so that the NoC can keep its
buffers empty when possible, thereby reducing traffic con-
gestion. Memory controller 502 can achieve this by using
end-to-end flow control as described in implementations
below to reduce traffic congestion. QoS policy allocator
(QPA) and handshake protocols implemented by/in a con-
troller 502 can facilitate the end-to-end flow control.

In another embodiment, memory controller 502 can be a
dedicated hardware for handling requests of other agents of
the NoC or may also be in the form of a computer readable
medium storing instructions for facilitating the requests.
Computer readable medium may take the form of a non-
transitory computer readable storage medium or a computer
readable signal medium as described below. Memory con-
troller 502 may also be implemented as a processor for its
respective NoC agent.

According to one embodiment, the present disclosure is
directed to Quality of Service (QoS) and handshake proto-
cols to facilitate endpoint bandwidth allocation among one
or more agents in a Network on Chip (NoC) for an endpoint
agent. The QoS policy and handshake protocols may involve
use of credits for buffer allocation, wherein the credits are
sent to agents in the NoC to compel acceptance of data and
allocation of an appropriate buffer. Messages sent to NoC
agents may also have a priority associated with the message,
wherein higher priority messages have automatic bandwidth
allocation and lower priority messages can be processed
using a handshake protocol.

Aspects of the present application may include a method,
which involves processing a request for accepting data from
a requesting agent associated with a Network on Chip
(NoC), wherein processing can include receiving data, at
receiving NoC agent, associated with the request when the
request is associated with a credit for buffer allocation and
utilizing a handshake protocol to process the request when
the request is not associated with the credit for buffer
allocation. In an implementation, handshake protocol can

25

40

45

8

include determination of whether a buffer is available for
receiving data associated with the request, wherein in case
a determination, indicative of the buffer being available for
receiving data, is made, a credit can be issued for buffer
allocation to the requesting NoC agent. On the other hand,
in case a determination, indicative of the buffer not being
available for accepting data, is made, the requesting NoC
agent can be notified with an indication of the buffer not
being available. In an implementation, the step of determin-
ing indication relating to availability of buffer can further
include the step of instructing the requesting NoC agent to
wait for an issuance of the credit for buffer allocation. In
another example implementation, such an indication can be
associated with a time interval for the requesting NoC agent
to resend the request upon an elapse of the time interval,
wherein the time interval can be determined by one or a
combination of the NoC agent and the indication.

Aspects of present application may also include a method,
which involves, for a network on chip (NoC) configuration,
including a plurality of cores interconnected by a plurality of
NoC agents/routers in a heterogenous or heterogenous mesh,
ring, or torus arrangement, allocating one or more buffers to
one or more agents associated with a Network on Chip
(NoC) based on a Quality of Service (QoS), and sending one
or more credits for buffer allocation to the one or more
agents based on the allocation. In an implementation, one or
more buffers can be reserved for one or more NoC agents
that require a reserve buffer based on the QoS policy. In an
example implementation, allocation of one or more buffers
can be done to one or more NoC agents based on the QoS
policy, from a pool of buffers.

In another example implementation, method of the pro-
posed architecture can include processing a request for
accepting data from a requesting NoC agent and evaluating
priority of the request. The method can further include
determining whether the evaluated priority is ‘high’, in
which case a credit can be allocated for buffer allocation to
the requesting agent. On the other hand, in case it is
determined that the priority is not ‘not high’, the requesting
NoC agent can be notified of the buffer not being available.
In such a case a credit can be allocated sooner a buffer is
available or at any other defined criteria. In another embodi-
ment, a run-time check of a ‘not high’ request can be done,
and sooner the status of the same changes, a credit can be
allocated. Number of time a ‘not high’ request is being
received can also be a parameter for deciding when the
credit is to be allocated. One should appreciate that any other
possible combination or new criteria for deciding when to
allocate a credit is completely within the scope of the instant
disclosure.

FIG. 6 illustrates an example implementation of a flow
diagram for processing a request to accept data in accor-
dance with an example implementation of the present inven-
tion. In an example flow for processing a request for
accepting data from a requesting agent, a request for accept-
ing data is processed by a receiving NoC agent at 600. At
601, a determination is made, by the receiving NoC agent,
as to whether the request is associated with a credit for buffer
allocation. If so (Yes), the protocol proceeds to 602, wherein
the request is accepted and a buffer is allocated from
memory of the receiving NoC agent to accept the data.
Otherwise (No), a handshake protocol is invoked, and the
flow proceeds to 603, wherein a determination is made as to
whether a buffer can be allocated to accept the data of the
request. If so (Yes), then the flow proceeds to 604, wherein
the receiving agent issues a credit for buffer allocation to the
requesting agent. In this manner, the requesting agent can

US 9,473,415 B2

9

subsequently send the request with the credit for the buffer
allocation to compel the receiving agent to allocate a buffer
for the data.

If a buffer cannot be allocated to accept the data for the
request (No), then the flow proceeds to 605, wherein the
receiving NoC agent sends a message to the requesting agent
that indicates that no buffer is available for the requesting
NoC agent. The message may be implemented in various
ways, depending on the desired implementation. In one
example implementation, the message may be associated
with a time interval such that the requesting NoC agent
resends the request to the receiving NoC agent once the time
interval has elapsed. Time interval can be set based on
desired implementation (e.g., based on QoS policy, band-
width allocated to the agent, etc.). Alternatively, time inter-
val can be determined by the requesting NoC agent based on
desired implementation of the requesting NoC agent, and the
requesting agent can be configured to automatically resend
the request after the time interval has elapsed.

In another example implementation, the message may be
associated with instructions to the requesting agent to wait
until a credit for buffer allocation is issued by the receiving
agent. In this example implementation, the requesting NoC
agent does not attempt to resend the request until it receives
a credit, wherein the requesting agent resends the request
along with the credit to compel the allocation of a buffer for
the data.

In an example implementation, receiving NoC agent can
also be configured to issue one or more credits for buffer
allocation to one or more requesting NoC agents based on
QoS policy. In an example implementation, receiving NoC
agent can preemptively issue one or more credits to agents
that are well known to be potential requesting NoC agents in
view of the receiving NoC agent. In this manner, requesting
agents can thereby send a request and use one of the
preemptively received credit and avoid the handshake pro-
tocol. After a requesting agent has used up all of its
associated credits, requesting agent can be mandated to
obtain additional credits via the handshake protocol. Issu-
ance of credits by the receiving agent can also depend on the
QoS policy. For example, a known requesting agent that
requires a higher bandwidth may be issued credits, whereas
agents that have smaller bandwidth requirements may not be
issued credits, or may be issued fewer credits.

In an example embodiment, receiving NoC agent can also
be configured to issue credits to requesting agents dynami-
cally. For example, while the receiving NoC agent is receiv-
ing data and allocating a buffer from a requesting agent, the
receiving agent can issue additional credits to the requesting
agent or to other agents in accordance with the QoS policy.
The receiving agent can also dynamically allocate buffers
based on the credits outstanding (e.g., issued but not yet
received).

Furthermore, credits for buffer allocation can be preemp-
tively provided based on expectation of receiving a message
such as a reply to a request. FIGS. 7(a)-(f) and 8(a)-(d)
illustrate example implementations involving preemptively
issuing a credit for buffer allocation. Specifically, FIG.
7(a)-(f) is an example when a handshake protocol is applied.
Interaction between two NoC agents requires a total of six
transactions. During the first three transactions: a request is
first sent (FIG. 7(a)) from a requesting NoC agent 702 to a
receiving NoC agent 704 without a credit; the receiving
agent 704 issues (FIG. 7(b)) a credit for buffer allocation
back to the requesting agent 702; and the requesting agent
702 then receives the credit and resends (FIG. 7(¢)) the
request with the credit for buffer allocation.

10

15

20

25

30

35

40

45

50

55

60

65

10

During the next three transactions, the receiving agent
704 sends (FIG. 7(d)) a message to the requesting agent 702
to indicate that the buffer has been allocated and storage of
data has been completed. However, the requesting agent 702
may also be acting as a receiving agent for other agents of
the NoC and may not be able to process the message when
the message is sent. The requesting agent 702 therefore
issues (FIG. 7(e)) a credit for buffer allocation to the
receiving agent 704, whereupon the receiving agent 704
resends (FIG. 7(f)) the message with the credit.

In an implementation, number of transactions in FIG.
7(a)-(f) can be reduced from six transactions to four trans-
actions by preemptively issuing credits for buffer allocation.
FIG. 8 illustrates an example involving preemptive issuance
of credits as applied to FIG. 7(a)-(f). The first three trans-
actions FIGS. 8(a)-8(c) are similar to that of FIGS. 7(a)-7
(¢), only in this example the requesting agent 802 knows that
the receiving agent 804 will provide a message to indicate
completion/failure of the storage of data into the buffer.
Therefore, when the requesting agent 802 resends (FIG.
8(¢)) the request and credit for buffer allocation, the request-
ing agent 802 also issues a credit for buffer allocation as a
return credit for the message. Thus, the receiving agent 804
only needs one transaction to send (FIG. 8(d)) the message
to the requesting agent 802 by attaching the return credit to
the message. The requesting agent 802 can then be com-
pelled to store the message in its buffer.

In example implementations of the present disclosure,
buffers in memory of a receiving agent 804 can be used to
form a common pool, or can be reserved for use only by
specific requesting agents 802 based on the QoS policy. In
either implementation, buffer can be allocated according to
the QoS policy and the handshake protocols. For example,
for implementations that reserve buffers for specific request-
ing agents, the receiving agent 804 can decide to preemp-
tively allocate buffers to specific agents based on the QoS
policy (e.g., 10 buffers for agent 1, 20 buffers for agent 2,
etc.), wherein the buffers allocated are only utilized by
specific agents as determined by the receiving agent.

In another example implementation, a common pool of
buffers can be utilized, wherein buffers are allocated based
on QoS policy. In such an implementation, receiving agent
can be configured to keep track of how many credits were
given to each requestor during a predetermined period (e.g.,
last T cycles) depending on the desired implementation.

To illustrate an example implementation involving a pool
of buffers, let the number of buffers allocated to each of the
requesting agents associated with the receiving agent be
denoted as by, b,, b;, b,, where 1, . . ., and n denotes the
requesting agent. For each cycle T, the receiving agent can
be configured to determine how many buffers has the
receiving agent given to each requestor. Let C,, C,,
Cs, ..., C, be a constant indicative of a threshold of buffer
allocations for agents 1, . . ., and n. In one example, the
receiving agent can automatically issue a credit if b,<C,
otherwise the handshake protocol can be used to determine
allocation of a credit.

Other variations of this implementation are also possible.
For example, a function f (b, b,, b,) can be implemented
such that if b,<[C,*function (b,, b,)], a credit can be auto-
matically issued. Function can be predicated on any factor as
needed for the desired implementation. For example, the
function can optimize credit allocation such that credits are
issued if other agents are idle. In such an implementation,
function can be configured such that if other b, b,, b, are
zero, the function is a high number (e.g. (summation of
C,/summation of b,). This is because when a value of b is

US 9,473,415 B2

11

zero, the requesting agent is idle as the requesting agent has
not asked for anything for last T cycles. Other functions are
also possible based on the desired policy.

In an example embodiment, an implementation involving
a common pool of buffers can be used in conjunction with
or separately from an implementation involving reserving
buffers for specific receiving agents.

In example implementations where buffers can be
reserved for specific requesting agents, receiving agent can
send pre-credits to the specific requesting agents based on
reserved buffers. Similar implementations can also be used
with the implementation involving a common pool of buf-
fers, wherein number of pre-credits can be based on some
algorithm according to a desired implementation. For
example, when a buffer is available in the pool, pre-credit
can be automatically sent based on determining requesting
agents that need a credit (e.g., are either waiting, were
previously denied, etc.)), (C;,=b,) can be computed, request-
ing agents having highest value of (C,-b,) can be deter-
mined, and a credit can be issued to requesting agent when
a buffer is available. Other implementations are also pos-
sible, such as sending a credit to the requesting agent that has
the highest value of [(C,-b,)/b,], or by other weighted
allocation schemes depending on the desired implementa-
tion.

In other example implementations, certain requests can be
prioritized over other requests. In such an implementation,
the receiving agent can be configured to process a request for
accepting data from a requesting agent associated with the
NoC and determine a priority of the request. When the
priority of the request is determined to be high, the receiving
agent can automatically allocate a credit for buffer allocation
to the agent. In this manner, high priority requests can be
processed more quickly by ensuring that a credit is sent to
the requesting agent without requiring the agent to wait or
resend the request at a later time interval. For requests that
are not high priority, the receiving agent can utilize a
handshake protocol as described above to either notify the
agent of buffer not being available or allocating a credit
when buffer is available. The notification can take the form
of an indication such as a message, or can be implemented
in other ways depending on the desired implementation.

Further, the priority scheme can be implemented based on
desired implementation of the NoC. For example, if requests
from the Central Processing Unit (CPU) agent of the NoC
are considered to be high priority, then requests from the
CPU can be indicated as high priority by either a flag or by
other implementations. In an example implementation, a
high priority request can always be serviced before a request
that is not high priority and no arbitration is needed for the
high priority requests. If multiple high priority requests are
received by the requesting agent, arbitration implementa-
tions such as the credit system and handshake protocol as
described above can be applied to arbitrate between multiple
high priority requests.

FIG. 9 illustrates an example computer system 900 on
which example implementations may be implemented. In an
example embodiment, system 900 can include a computing
device such as a computer 905, which may involve an /O
unit 935, storage 960, and a processor 910 operable to
execute one or more units as known to one of skill in the art.
The term “computer-readable medium” as used herein refers
to any medium that participates in providing instructions to
processor 910 for execution, which may come in the form of
computer readable storage mediums, such as, but not limited
to optical disks, magnetic disks, read-only memories, ran-
dom access memories, solid state devices and drives, or any

10

15

20

25

30

35

40

45

50

55

60

65

12

other types of tangible media suitable for storing electronic
information, or computer readable signal mediums, which
can include media such as carrier waves. The I/O unit 935
processes input from user interfaces 940 and operator inter-
faces 945 which may utilize input devices such as a key-
board, mouse, touch device, or verbal command.

Computer 905 may also be connected to an external
storage 950, which can contain removable storage such as a
portable hard drive, optical media (CD or DVD), disk media
or any other medium from which a computer can read
executable code. The computer may also be connected an
output device 955, such as a display to output data and other
information to a user, as well as request additional informa-
tion from a user. Connections from computer 905 to user
interface 940, operator interface 945, external storage 950,
and output device 955 may be through wireless protocols,
such as the 802.11 standards, Bluetooth® or cellular proto-
cols, or via physical transmission media, such as cables or
fiber optics. Output device 955 may therefore further act as
an input device for interacting with a user.

Processor 910 may execute one or more modules includ-
ing a memory controller module 911 that is configured to
generate instructions for transmitting data/packets into/from
memory controllers of one or more agents of NoC. Module
911 can also be configured to facilitate Quality-of-Service
(QoS) through various protocols such as a QoS policy,
handshaking protocols, and other protocols depending on
desired implementations, wherein the module 911 can either
configured within each memory controller of respective
NoC agent, or in a group/sub-group of controllers, or can be
externally implemented to control and be operatively/com-
municatively coupled with respective memory controllers.
Instructions of the module 911 can be configured to facilitate
interaction between the data/packet requesting NoC agents
and receiving NoC agents. Such instructions, for instance,
can be implemented on a non-transitory computer readable
medium and configured to process a request for accepting
data, wherein the module 911 may determine whether to act
on the request or deny the request. Module 911 may also be
configured to implement and allocate bandwidth to associ-
ated NoC agents based on a QoS policy by issuing credits for
buffer allocation, thereby behaving as a QoS policy allocator
(QPA).

In some example implementations, the computer system
900 can be implemented in a computing environment such
as a cloud. Such a computing environment can include the
computer system 900 being implemented as or communi-
catively connected to one or more other devices by a
network and also connected to one or more storage devices.
Such devices can include movable user equipment (UE)
(e.g., smartphones, devices in vehicles and other machines,
devices carried by humans and animals, and the like),
mobile devices (e.g., tablets, notebooks, laptops, personal
computers, portable televisions, radios, and the like), and
devices designed for stationary use (e.g., desktop computers,
other computers, information kiosks, televisions with one or
more processors embedded therein and/or coupled thereto,
radios, and the like).

Furthermore, some portions of the detailed description are
presented in terms of algorithms and symbolic representa-
tions of operations within a computer. These algorithmic
descriptions and symbolic representations are the means
used by those skilled in the data processing arts to most
effectively convey the essence of their innovations to others
skilled in the art. An algorithm is a series of defined steps
leading to a desired end state or result. In the example

US 9,473,415 B2

13

implementations, the steps carried out require physical
manipulations of tangible quantities for achieving a tangible
result.

Moreover, other implementations of the present applica-
tion will be apparent to those skilled in the art from
consideration of the specification and practice of the
example implementations disclosed herein. Various aspects
and/or components of the described example implementa-
tions may be used singly or in any combination. It is
intended that the specification and examples be considered
as examples, with a true scope and spirit of the application
being indicated by the following claims.

What is claimed is:

1. A non-transitory computer readable storage medium
storing instructions for executing a process, the instructions
comprising:

processing a request for accepting data from an agent

associated with a Network on Chip (NoC), the process-
ing comprising:

receiving data associated with the request when the

request is associated with a credit for buffer allocation;
and

utilizing a handshake protocol to process the request when

the request is not associated with the credit for buffer
allocation;

wherein the handshake protocol comprises:

determining if a buffer is available for receiving data
associated with the request;

for a determination indicative of the buffer being avail-
able for receiving data, issuing the credit for buffer
allocation to the agent; and

for a determination indicative of the buffer not being
available for accepting data, notifying the agent with
an indication of the buffer not being available.

2. The non-transitory computer readable storage medium
of claim 1, wherein the indication further comprises instruc-
tions for the agent to wait for an issuance of the credit for
buffer allocation.

3. The non-transitory computer readable storage medium
of claim 1, wherein the indication is associated with a time

interval for the agent to resend the request upon an elapse of

the time interval, wherein the time interval is determined by
one of:
the agent; and
the indication.
4. The non-transitory computer readable storage medium
of claim 1, wherein the instructions further comprise:
issuing one or more credits of buffer allocation to one or
more agents based on a Quality of Service (QoS)
policy.
5. The non-transitory computer readable storage medium
of claim 1, wherein the instructions further comprise:
receiving a return credit from the agent; and
sending a return message and the return credit in response
to the request for accepting data.
6. An agent associated with a Network on Chip (NoC),
comprising:
a processor, configured to:
process a request for accepting data from another agent
associated with the NoC, by:
receiving data associated with the request when the
request is associated with a credit for buffer alloca-
tion; and
utilizing a handshake protocol to process the request
when the request is not associated with the credit for
buffer allocation;

10

15

20

25

30

35

40

45

50

55

60

65

14

wherein the processor is configured to utilize the hand-

shake protocol by:

determining if a buffer is available for receiving data
associated with the request;

for a determination indicative of the buffer being
available for receiving data, issuing the credit for
buffer allocation to the another agent; and

for a determination indicative of the buffer not being
available for accepting data, notifying the agent
with an indication of the buffer not being avail-
able.

7. The agent of claim 6, wherein the indication further
comprises instructions for another agent to wait for an
issuance of the credit for buffer allocation.

8. The agent of claim 6, wherein the indication is asso-
ciated with a time interval for the another agent to resend the
request upon an elapse of the time interval, wherein the time
interval is determined by one of:

the another agent; and

the indication.

9. The agent of claim 6, wherein the processor is config-
ured to: issue one or more credits of buffer allocation to one
or more other agents based on a Quality of Service (QoS)
policy.

10. The agent of claim 6, wherein the processor is
configured to:

receive a return credit from the agent; and

send a return message and the return credit in response to

the request for accepting data.

11. A method for processing a request for accepting data
from an agent associated with a Network on Chip (NoC), the
method comprising:

receiving data associated with the request when the

request is associated with a credit for buffer allocation;
and

utilizing a handshake protocol to process the request when

the request is not associated with the credit for buffer
allocation;

wherein the handshake protocol comprises:

determining if a buffer is available for receiving data
associated with the request;

for a determination indicative of the buffer being avail-
able for receiving data, issuing the credit for buffer
allocation to the agent; and

for a determination indicative of the buffer not being
available for accepting data, notifying the agent with
an indication of the buffer not being available.

12. The method of claim 11, wherein the indication further
comprises instructions for the agent to wait for an issuance
of the credit for buffer allocation.

13. The method of claim 11, wherein the indication is
associated with a time interval for the agent to resend the
request upon an elapse of the time interval, wherein the time
interval is determined by one of:

the agent; and

the indication.

14. The method of claim 11, further comprising:

issuing one or more credits of buffer allocation to one or

more agents based on a Quality of Service (QoS)
policy.

15. The method of claim 11, further comprising:

receiving a return credit from the agent; and

sending a return message and the return credit in response

to the request for accepting data.

16. An apparatus configured to generate instructions for
an agent associated with a Network on Chip (NoC) for

US 9,473,415 B2

15

processing a request for accepting data from an agent
associated with a Network on Chip (NoC), the instructions
comprising:
receiving data associated with the request when the
request is associated with a credit for buffer allocation;
and

utilizing a handshake protocol to process the request when
the request is not associated with the credit for buffer
allocation;

wherein the handshake protocol comprises:
determining if a buffer is available for receiving data
associated with the request;
for a determination indicative of the buffer being avail-
able for receiving data, issuing the credit for buffer
allocation to the agent; and
for a determination indicative of the buffer not being

available for accepting data, notifying the agent with
an indication of the buffer not being available.

10

15

16

17. The apparatus of claim 16, wherein the indication
further comprises instructions for the agent to wait for an
issuance of the credit for buffer allocation.

18. The apparatus of claim 16, wherein the indication is
associated with a time interval for the agent to resend the
request upon an elapse of the time interval, wherein the time
interval is determined by one of:

the agent; and

the indication.

19. The apparatus of claim 16, wherein the instructions
further comprise:

issuing one or more credits of buffer allocation to one or

more agents based on a Quality of Service (QoS)
policy.

20. The apparatus of claim 16, wherein the instructions
further comprise:

receiving a return credit from the agent; and

sending a return message and the return credit in response

to the request for accepting data.

#* #* #* #* #*

